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Modularity/Automorphy Questions

A: Arithmetic modularity/automorphy. This is concerned with

Calabi–Yau varieties defined over Q (or number fields). The main

questions are the modularity/automorphy of the cohomological

L-series of the ℓ-adic Galois representations associated to these

varieties in the framework of Langlands Philosophy.

G: Geometric modularity. This is concerned with families of

Calabi–Yau manifolds. The main questions are the

modular/automorphic properties of various invariants associated to

these varieties, e.g., mirror maps, Gromov–Witten invariants,

Donaldson–Thomas invariants, holomorphic anomaly equations,

etc. arising in string theory. Quasi-modular forms, Jacobi forms,

Siegel modular forms, and more general modular-like forms show

their appearances in this landscpae.
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Langlands Philosophy for Arithmetic Modularity

(Motivic) L-functions of algebraic varieties over Q (or number

fields) are automorphic L-functions

I will try to give some examples in support of this philosophy when

varieties are Calabi–Yau varieties defined over Q.

In this talk, we will consider Calabi–Yau varieties defined over Q of

dimension at most 3.
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Calabi–Yau Varieties

Definition: A smooth projective variety X/C of dimension d is

said to be Calabi–Yau if

(CY1) Hi(X,OX) = 0 for every i, 0 < i < d, and

(CY2) The canonical bundle KX is trivial, i.e, KX ≃ OX .

Now introduce Hodge numbers:

hi,j(X) := dimCHj(X, Ωi
X) for 0 ≤ i, j ≤ d

Then

hi,j(X) = hj,i(X) by complex conjugation

and

hi,j(X) = hd−i,d−j(X) by the Serre duality.
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Remark In terms of Hodge numbers, X/C is Calabi–Yau if

(CY1)⇔ hi,0(X) = 0 for every i, 0 < i < d, and

(CY2)⇒ hd,0(X) = h0,d(X) = dimCH0(X, Ωd
X) = dimCH0(X,KX)

= dimCH0(X,OX) = 1.

The number h0,d(X) is the geometric genus pg(X) of X .

Numerical characters

• The Betti numbers Bk(X) := dimCHk(X, C).

Bk(X) =
∑

i+j=k

hi,j(X).

• The Euler characteristic E(X) :=
∑2d

k=0(−1)kBk(X).
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Hodge diamonds

The Hodge numbers of Calabi–Yau varieties are concocted to form

the Hodge diamond.

d = 1 : Elliptic curves

h1,0 = h0,1 = 1

1 B0 = 1

1 1 B1 = 2

1 B2 = 1

E = 0
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Dimension one Calabi–Yau varieties are elliptic curves. Elliptic

curves over Q are defined by y2 = x3 + ax + b with 4a3 + 27b2 ̸= 0.
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d = 2 : K3 surfaces

h1,0 = h0,1 = 0, h2,0 = h0,2 = 1

1 B0 = 1

0 0 B1 = 0

1 20 1 B2 = 22

0 0 B3 = 0

1 B4 = 1

E = 24
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By the Max Noether’s formula, we have

χ(OX) = (c2
1 + c2)/12

where c1, c2 are the first and the second Chern numbers, and

c1 = 0, c2 = E = 24.

Now

χ(OX) = h0,0 − h1,0 + h2,0 = 1 − 0 + 1 = 2

from which we can derive that h1,1 = 20.
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Examples: (1) Any quartic surface in P3. A typical example is the

Fermat quartic:

X4
0 + X4

1 + X4
2 + X4

3 = 0 ⊂ P3,

or its one-parameter deformation:

X4
0 + X4

1 + X4
2 + X4

3 − 4λX0X1X2X3 = 0 ⊂ P3 × P1.

(This is bacause, KX ≃ OX(d − N − 1) ≃ OX implies that

d = N + 1. If N = 3, then d = 4.)

(2) Double sextic surface, e.g., w2 = f6(x, y, z).

(3) Elliptic K3 surfaces, e.g., Y 2Z = X3 + A(t)XZ2 + B(t)Z3 with

4A3(t) + 27B2(t) ̸= 0.

(4) Complete intersections.

(5) Toric constructions, reflexive polytopes.
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d = 3: Calabi–Yau threefolds

h1,0 = h0,1 = 0, h2,0 = h0,2 = 0, h3,0 = h0,3 = 1, h1,1 > 0

1 B0 = 1

0 0 B1 = 0

0 h1,1 0 B2 = h1,1

1 h2,1 h1,2 1 B3 = 2(1 + h2,1)

0 h2,2 0 B4 = h2,2

0 0 B5 = 0

1 B6 = 1

E = 2(h1,1 − h2,1)

Problem: |E(X)| < ∞?
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Examples: (1) Quintic threefolds in P4. A typical example is is

the Fermat quintic:

X5
0 + X5

1 + X5
2 + X5

3 + X5
4 = 0 ⊂ P4,

or its one-parameter deformation:

X5
0 + X5

1 + X5
2 + X5

3 + X5
4 − 5λX0X1X2X3X4 = 0 ⊂ P4 × P1.

More generally, hypersurface Calabi–Yau threefolds in

projective/weighted projective spaces.

(2) Double octics, fiber products, Calabi–Yau threefolds of product

type.

(3) Complete intersection threefolds.

(4) Toric Calabi–Yau threefolds (∼ 600 million).
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The largest possible Hodge numbers, or equivalently the Euler

characteristic of a Calabi–Yau threefold is not known, but some

known examples (∼ 600 million) have h1,1( or h2,1)∼ 500.

An implication in string theory is that string theory may have as

many as 10500 vacua that can be described with various choices of

branes and fluxes on homology cycles of a CY. Thus string theory

has a vast number of different vacua, and only one should describe

dynamics of our real world.
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(Topological) Mirror Symmetry Conjecture

Given a Calabi–Yau threefold X with Hodge numbers

(h1,1(X), h2,1(X)), there exists a mirror family of Calabi–Yau

threefolds X̂ with Hodge numbers (h1,1(X̂), h2,1(X̂)) such that

h1,1(X̂) = h2,1(X), h2,1(X̂) = h1,1(X)

so

E(X̂) = −E(X).
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The L-series

We will consider Calabi–Yau varieties defined over Q, say, by

hypersurfaces or by complete intersections. We say that X/Q is

Calabi–Yau if X ⊗Q C is Calabi–Yau. Let X/Q be a Calabi–Yau

with a defining equation with coefficients in Z[1/m] for some

m ∈ N. Let p be a prime (p, m) = 1, let Xp := X modp be the

reduction of X modulo p. We say that p is good if Xp is smooth

over Fp, otherwise bad.

Let #X(Fpk) be the number of rational points on Xp over Fpk .

The local (congruent) zeta function of Xp is defined by taking the

formal sum

Zp(X, T ) := exp

(

∞
∑

k=1

#X(Fpk)

k
T k

)

∈ Q[[T ]]

where T is an indeterminate.
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There were vast series of conjectures about Zp(X, T ), known as the

Weil conjectures, proved finally by Deligne.

Let ℓ be a prime ̸= p. The Frobenius morphism Frp (x -→ xp) on

Xp induces an endomorphism Fr∗p on the étale cohomology groups

Hi
et(Xp, Qℓ) for each i, 0 ≤ i ≤ 2d. Grothendieck specialization

theorem gives an isomorphism Hi
et(Xp, Qℓ) ≃ Hi

et(X, Qℓ), where

X = X ⊗Q Q. By the comparison theorem,

Hi
et(X, Qℓ) ≃ Hi(X ⊗Q C, C) so that dimQℓ

Hi
et(X, Qℓ) = Bi(X)

(the i-th Betti number). There is the Poincaré duality:

Hi(X, Qℓ) × H2d−i
et (X, Qℓ) → Qℓ is a perfect pairing for every

i, 0 ≤ i ≤ 2d .

Let

P i
p(T ) := det(1 − Fr∗p T |Hi

et(X, Qℓ))

be the characteristic polynomial of Fr∗p.
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Weil’s Conjectures (Theorem)

• P i
p(T ) ∈ 1 + TZ[T ].

• P i
p(T ) does not depend on the choice of ℓ.

• degP i
p(T ) = Bi(X) for every i, 0 ≤ i ≤ 2d.

• P 2d−i
p (T ) = ±P i

p(p
d−iT ) for every i, 0 ≤ i ≤ d.

• If we write P i
p(T ) =

∏Bi

k=1(1 − αk T ) ∈ Q[T ], then αk is an

algebraic integer with |αk| = pi/2 (The Riemann Hypothesis).

• Zp(X, T ) is a rational function:

Zp(X, T ) =

∏d
i=1 P 2i−1

p (X, T )
∏d

i=0 P 2i
p (X, T )

.
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Let GQ = Gal(Q/Q) be the absolute Galois group. There is a

compatible system of ℓ-adic Galois representations

ρi
X,ℓ : GQ → GL(Hi

et(X, Qℓ))

sending the (geometric) Frobenius Fr∗−1
p to ρi(Fr∗p

−1) which has

the same action as the Fr∗p on Hi
et(X, Qℓ).

Definition: The i-th (cohomological) L-series (or L-function) of

X/Q is defined by

Li(X, s) := L(Hi
et(X, Qℓ), s)

:= (∗)
∏

p ̸=ℓ:good

P i
p(p

−s)−1 × (factor corresponding to ℓ = p)

where the product is taken over all good primes different from ℓ

and (∗) corresponds to factors of bad primes. For ℓ = p we use

p-adic cohomology groups.

The most significant L-series is the L-series Ld(X, s) =: L(X, s).
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The vector space Hi
et(X, Qℓ) may decompose into a direct sum of

subspaces, and we can define the motivic L-series corresponding to

these subspaces.

Locally for each good prime, the characteristic polynomial P i
p(T )

can be determined by geometric information and by counting the

number of rational points on Fp by invoking the Lefschetz fixed

point formula.

#X(Fp) =
2d
∑

k=0

(−1)ktrace(Fr∗p |H
i
et(X, Qℓ))
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Automorphy/Modularity Question

Are there global functions that determine the L-series Li(X, s)?

More concretely, are there automorphic (modular) forms that

determine Li(X, s)?

18



Modularity Results since 1994

• Dim 1: Every elliptic curve E over Q is modular. There is a

modular form f of weight 2 on some Γ0(N) such that

L(E, s) = L(f, s).

• Dim 2: Every singular K3 surface S over Q is modular. There is

a modular form f of weight 3 on some Γ0(N) with a mod N

Dirichelt character χ such that L(T (S) ⊗ Qℓ, s) = L(f, χ, s).

• Dim 3: Every rigid Calabi–Yau threefold X over Q is modular.

There is a modular form f of weight 4 on some Γ0(N) such that

L(X, s) = L(f, s).
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Modular forms

• Modular groups. Let

SL2(Z) =

⎧

⎨

⎩

⎛

⎝

a b

c d

⎞

⎠ | a, b, c, d ∈ Z, ad − bc = 1

⎫

⎬

⎭

.

Put Γ = PSL2(Z) = SL2(Z)/ ± I2. Then

=
〈

S, T |S2 = (TS)3 = I2

〉

where

T =

⎛

⎝

1 1

0 1

⎞

⎠ , S =

⎛

⎝

0 1

−1 0

⎞

⎠ .

Γ acts on the upper-half complex plane H = { z ∈ C | Im(z) > 0 }

32



by the linear fractional transformation
⎛

⎝

a b

c d

⎞

⎠ (z) =
az + b

cz + d
.

Define H∗ = H ∪ P1(Q), where P1(Q) is the set of fixed points

(called cusps) of this action. ((x : 1) ∈ P1(Q) is identified with

x ∈ Q; (x : 0) with i∞.)

Now let N ≥ 1 be an integer. Let

Γ0(N) = {

⎛

⎝

a b

c d

⎞

⎠ ∈ Γ | c ≡ 0 (mod N) }.

Γ0(N) is a congruence subgroup of Γ.

Let k be a non-negative integer.

Definition: A modular form of weight k and level N on Γ0(N) is a
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holomorphic function f : H → C such that

(MF1)

f(
az + b

cz + d
) = (cz + d)kf(z) for all

⎛

⎝

a b

c d

⎞

⎠ ∈ Γ0(N).

(MF2) f is holomorphic at all cusps.

Since T =

⎛

⎝

1 1

0 1

⎞

⎠ ∈ Γ0(N), f has a Fourier expansion at i∞:

f(q) =
∑

n

af (n)qn with q = e2πiz.

The cusp i∞ corresponds to q = 0, and f is holomorphic at i∞ if

and only if af (n) = 0 for all n < 0; f vanishes at i∞ if af (0) = 0.

A cups form is a modular form which vanishes at all cusps.
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We can also define modular forms with a mod N character χ:

f(
az + b

cz + d
) = χ(d)(cz + d)kf(z)

and

f(q) =
∑

n

χ(n)af (n)qn.
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Result: d = 1

Theorem (Wiles et al. 1994,..., 2001.): Every elliptic curve E over

Q is modular. That is, there is a cusp form f of weight 2 = 1 + 1

on Γ0(N) such that

L(E, s) = (∗)
∏

p:good

P 1
p (p−s)−1 = L(f, s)

Here N is the conductor of E and Γ0(N) = {

⎛

⎝

a b

c d

⎞

⎠ | c ≡ 0

(mod N) } ⊂ PSL(2, Z).

There is a compatible system of 2-dimensional ℓ-adic Galois

representations associated to E, and Wiles et al. established its

modularity.
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• L(E, s) for an elliptic curve E over Q.

For a good prime p, we have

#E(Fp) = 1 − t1(p) + p

where t1(p) = trace(Fr∗p|H
1
et(E, Qℓ)) with |t1(p)| ≤ 2p1/2. Then

P 1
p (T ) = 1 − t1(p)T + pT 2

and L(E, s) is given by

L(E, s) = (∗)
∏

p:good

P1(p
−s)−1 =

∑

n≥1

a(n)

ns
.

On the other hand, write the Fourier expansionof a modular (cusp)

form f of weight 2 and level N as

f(q) =
∑

n≥1

af (n)

ns
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with af (1) = 1. Then

a(n) = af (n) ∀n.
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Remark: However, there is no conceptial understanding why E is

modular. Perhaps, this may be explained by some “index”

theorem?
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Some Results d = 3

Definition: A Calabi–Yau threefold X over Q is said to be rigid if

h2,1(X) = 0 (so that B3(X) = 2). Thus, the Hodge diamond of any

rigid Calabi–Yau threefold is given by

1 B0 = 1

0 0 B1 = 0

0 h1,1 0 B2 = h1,1

1 0 0 1 B3 = 2

0 h2,2 0 B4 = h2,2

0 0 B5 = 0

1 B6 = 1

E = 2h1,1
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Theorem (Gouvêa–Yui/Dieulefait) :Every rigid Calabi–Yau

threefold X defined over Q is modular. That is, there is a cusp

form f of weight 4 = 3 + 1 on Γ0(N) such that

L(X, s) = L3(X, s) = L(f, s)

Here N is divisible only by bad primes.

There is a compatible system of 2-dimensional ℓ-adic Galois

representations associated to X . Proof relies on the validity of

Serre’s conjecture on the residual 2-dimensional Galois

representations, proved by Khare–Wintenberger and Kisin.
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Let A3 be the root lattice. Associated to A3, Verrill constructed a

rigid Calabi–Yau threefold X over Q. It is defined as a smooth

resolution of the hypersurface

(X1 +X2 +X3 +X4)(X
−1
1 +X−1

2 +X−1
3 +X−1

4 )− (t− 1)2/t− 4 = 0

in P3 × P1. Then

h3,0 = 1, h1,0 = h2,0 = 0, h2,1 = 0, h1,1 = 50

So X is a rigid Calabi–Yau threefold over Q with E(X) = 100.

Thus, X is modular, that is,

L(X, s) = L(f, s)

where

f(q) = [η(q)η(q2)η(q3)η(q6)]2

is a weight 4 modular (cusp) form for Γ0(6), where η(q) is the

eta-function.
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Masahiko Saito and Yui (2001) constructed a rigid Calabi–Yau

threefold Y defined over Q. Let S be the rational elliptic surface

defined by the hypersurface

(x + y + z)(xy + yz + zx) = (s + 1)xyz ⊂ P2 × P1

associated to Γ1(6). Put Y0 = S ×P1 S be the self-fiber product of

S and Y be a crepant resolution of Y0. Then Y is a rigid

Calabi–Yau threefold with h1,1 = 50.

There is an explicit birational transformation defined over Q from

Y to X . Therefore,

L(Y, S) = L(X, s) = L(f, s).

(Note that Γ0(6) and Γ1(6) have the same projectivation.)
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• L(X, s) for a rigid Calabi–Yau threefold X over Q.

For a good prime p, we have

#X(Fp) =
6
∑

i=0

(−1)iti(p)

where we put ti(p) = trace(Fr∗p|H
i
et(X, Qℓ)). Then

#X(Fp) = t0(p) − t1(p) + t2(p) − t3(p) + t4(p) − t5(p) + t6(p)

= 1 + t2(p) − t3(p) + t4(p) + p3

= 1 + p3 + (1 + p)t2(p) − t3(p)

So

t3(p) = 1 + p3 + (1 + p)t2(p) − #X(Fp)

with

|t2(p)| ≤ ph1,1, and |t3(p)| ≤ 2p3/2.
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Then

P 3
p (T ) = 1 − t3(p)T + p3T 2

and the L(X, s) is given by

L(X, s) = (∗)
∏

p:good

P3(p
−s)−1 =

∑

+n
a(n)

n−s

On the other hand, we have the Fourier expansion of a modular

form f of weight 4 on Γ0(N) for some N ∈ N:

f(q) =
∑

n≥1

af (n)

ns
.

Then we have

a(n) = af (n) ∀n.
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Some Results: d = 2

Let X be a K3 surface defined over Q. Then H2(X, Z) is a free

Z-module of rank 22. There is the intersection pairing on X , which

gives rise to a quadratic form on H2(X, Z), and H2(X, Z) captures

a structure of a lattice of rank 22 with the following properties:

unimodular, even, indefinite and with signature (3, 19). Then there

is an isometry

H2(X, Z) → U3 ⊕ (−E8)
2

where U is the hyperbolic lattice of rank 2 and −E8 is the unique

negative definite unimodular form of rank 8. The latter is called

the K3 lattice.
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Let NS(X) denote the Néron–Severi group of X generated by

algebraic cycles. It is a free finitely generated abelian group, and

NS(X) = H1,1(X, R) ∩ H2(X, Z) so that the rank of NS(X)

(called the Picard number of X and denoted by ρ(X)) is bounded

by 20. Let T (X) = NS(X)⊥ be the orthogonal complement of

NS(X) in H2(X, Z). It has the Z-rank 22 − ρ(X), and is called the

group of transcendental cycles on X . We have the decomposition

H2(X, Z) ⊗Q Qℓ = (NS(X) ⊗ Qℓ) ⊕ (T (X) ⊗ Qℓ)

and we have the decomposition of the L-series:

L2(X, s) = L(NS(X) ⊗ Qℓ, s)L(T (X) ⊗ Qℓ, s).
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The Tate conjecture is valid for any K3 surface over Q, which

asserts that

H2
et(X, Qℓ)

Gal(Q/Q) = NS(X)Q.

Thus the L-series L(NS(X) ⊗ Qℓ, s) is expressed in terms of

ζ(s − 1)ρ(X) if all algebraic cycles are defined over Q where ζ(s)

denotes the Riemann zeta-function. The other extreme is when all

algebraic cycles are defined over some algebraic number field L,

then L(NS(X) ⊗ Qℓ, s) = ζL(s − 1)ρ(X) where ζL(s) is the

Dedekind zeta-function of L. However, these extreme situations

occur very rarely. In general, some algebraic cycles may be defined

over Q, but others are not, in which case, Artin L-function should

come into the picture.
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Therefore, for K3 surfaces, we will address the

modularity/automorphy of the motivic L-series, namely, that of

L(T (X) ⊗ Qℓ, s).

Definition: A K3 surface X over Q is singular (or extremal) if

ρ(X) = 20 (so that Z-rank of T (X) = 2).

Theorem (Livné): Every singular K3 surface X over Q is

motivically modular. That is, there is a cusp form f of weight

3 = 2 + 1 on Γ0(N) with a character χ such that

L(T (X) ⊗ Qℓ, s) = L(f, χ, s).

Here χ is a mod N Dirichlet character associated to an imaginary

quadratic field over Q.
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There is a compatible system of 2-dimensional ℓ-adic Galois

representations associated to T (X), and Livné established the

modularity of such representations.
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Mirror symmetry conjecture for K3 surfaces

This version of mirror symmetry for K3 surfaces is due to

Dolgachev (based on Arnold’s strange duality).

Let X be a K3 surface with Picard number ρ(X). Then there exists

a mirror K3 surface X̂ with Picard number ρ(X̂) such that

T (X) = U ⊕ NS(X̂)

in terms of rank,

22 − ρ(X) = 2 + ρ(X̂) ⇔ ρ(X) + ρ(X̂) = 20.
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